
www.manaraa.com

An End-to-End Tool Chain for Multi-View Modeling and

Analysis of Avionics Mission Computing Software∗

Zonghua Gu, Shige Wang, Sharath Kodase and Kang G. Shin

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science

University of Michigan
Ann Arbor, MI 48109-2122, USA

{zgu,wangsg,skodase,kgshin}@eecs.umich.edu

Abstract
We present an end-to-end tool-chain for model-based

design and analysis of component-based embedded real-
time software, with Avionics Mission Computing as
an application domain. The tool-chain covers the en-
tire system development life-cycle including modeling,
analysis, code generation, and runtime instrumenta-
tion. Emphasis is placed on integration of tools de-
veloped by multiple institutions via standardized inter-
face format definitions in XML. By capturing all rele-
vant information explicitly in models at the design level,
and performing analysis that provides insight into non-
functional aspects of the system, we can raise the level
of abstraction for the designer, and facilitate rapid sys-
tem prototyping.

1 Introduction
The Bold Stroke framework [6] is a product-line ar-

chitecture used at Boeing for developing avionics mis-
sion computing software, which is the embedded soft-
ware aboard a military aircraft for controlling mission-
critical functions, such as navigation, target tracking
and identification, and weapon firing. It is modeled
in UML, manually coded in C++, and runs on top of
Real-Time CORBA Event Service. Even though there
exist UML models for the software, they mainly serve in
a documentation role that the software developer can
refer to while performing manual coding. Therefore,
the link between model and code is weak and easily
broken in the process of system maintenance and evo-
lution, when code is modified or enhanced without the
corresponding changes at the model-level, or vice versa.
Furthermore, UML has little support for analysis that is

∗The work reported in this paper was supported in part by
DARPA and ARO under contracts/grants F3615-00-1706 and
DAAD19-01-1-0473, respectively.

relevant for embedded systems, such as real-time prop-
erties like schedulability, safety properties like deadlock
freedom, etc.

The DARPA MoBIES (Model-Based Integration of
Embedded Software) program, started in 2000, has
been exploring model-based approaches for embedded
software composition and analysis, especially emphasiz-
ing non-functional issues such as timing, synchroniza-
tion, dependability and resource constraints. Within
the context of the MoBIES program, researchers from
multiple institutions have been working together to pro-
duce an end-to-end tool-chain with the Bold Stroke
framework as the main application domain. All as-
pects of an embedded real-time system are captured
in domain-specific models, including software compo-
nents and architecture, timing and resource constraints,
processes and threads, execution platforms, etc. Con-
figuration code generation allows automated building
of the application executable. Instrumentation of the
application running on a target platform is used to col-
lect runtime statistics that are fedback into the models.
Analysis tools perform various static analyses based on
the models, including system-level dependency anal-
ysis, execution-rate assignment to component ports,
real-time and schedulability analysis, and automated
allocation of components to processors. The MoBIES
tool-chain contains a number of novel ideas:

• It uses meta-modeling to define domain-specific
modeling constructs that allow us to precisely cap-
ture domain concepts, as opposed to general pur-
pose UML modeling tools that provides a fixed set
of modeling constructs with limited extensibility.

• It covers the entire systems development lifecycle
including modeling, analysis, code generation and
runtime instrumentation, as opposed to point so-

www.manaraa.com

lutions that targets limited points in the system
life-cycle.

• The various tools are integrated on top of the
Open Tool Integration Framework (OTIF) [2],
which enables seamless runtime collaboration of
different tools via publish/subscribe communica-
tion paradigm on a CORBA backplane and stan-
dardized interface file format definitions in XML.
It allows easy plug-in of other third-party tools by
adding a few lines of code that calls the OTIF API.
This represents a significant advantage over closed,
proprietary, monolithic tool architectures that of-
fer limited or no extensibility.

This paper is structured as follows. Section 2 de-
scribes the ESML modeling language; Section 3 de-
scribes several standard interface formats; Section 4 de-
scribes the overall workflow of the tool-chain; Section 5
describes the AIRES tool for model-level analysis; Sec-
tion 6 discusses related work, and the paper concludes
with Section 7.

2 Multi-View Modeling

Based on the Model-Integrated Computing
(MIC) [8] approach, the Generic Modeling Envi-
ronment (GME) is a configurable toolset for creating
domain-specific modeling and program synthesis
environments through a meta-model that specifies
the modeling paradigm of the application domain.
The meta-model contains descriptions of the entities,
attributes, and relationships that are available in
the modeling environment, and defines the family
of models that can be created using the resulting
modeling environment.

The Embedded Systems Modeling Language meta-
model (ESML) [4] defines a comprehensive visual mod-
eling language that captures all essential aspects, or
views, of the embedded system, including software
architecture, timing and resource constraints, execu-
tion threads, execution platform information (pro-
cessors and network), allocation of components to
threads/processors, etc. The model of computation
is based on publish/subscribe paradigm on top of
CORBA Event Service. Components are composite
objects with ports interacting with one another either
through event triggers or method invocations. Compo-
nents are allocated to the (possibly distributed) target
execution platform, and execute within the context of
system threads, which are triggered at harmonically-
related execution rates such as 1Hz, 5Hz, and 10Hz,
and may span multiple processors. We refer the inter-
ested reader to [4] for more details on ESML.

3 Standard Interface Formats
Models described in ESML serve as the central

repository of information for all analysis and code gen-
eration purposes. Several standardized interface for-
mats such as AIF, CIF and IIF have been defined for
use in conjunction with ESML to facilitate integration
with third-party tools. They are described with UML-
based meta-models, and translators between them can
be written using APIs generated from the meta-models.

The Analysis Interface Format (AIF) is essentially a
subset of the ESML language that contains the depen-
dency and real-time information needed by the analysis
tools. Utility tools developed by Vanderbilt University
can be used to transform ESML models into AIF files,
as well as feedback analysis results from AIF files into
ESML model. Besides ESML/GME, another modeling
tool developed by Honeywell has been integrated into
the MoBIES tool-chain by extracting AIF files from its
models.

The Configuration Interface Format (CIF) is used
to express the component interconnection topology and
generate C++ header file used in initializing the appli-
cation structure at system startup. It is essentially a
configuration script that guides generic configuration
methods in the creation of components, event ports,
facets and receptacles, establishing the relationships be-
tween them, and configuring them according to various
QoS attributes. CIF can be obtained in a forward direc-
tion from the ESML model by a translator developed
by Vanderbilt University, or from reverse engineering
an existing legacy application by instrumenting the sys-
tem.

The Instrumentation Interface Format (IIF) defines
a standardized format for collection of runtime exe-
cution traces used for off-line analysis. Instrumen-
tation currently supports gathering and outputting
static/configuration information (e.g., threads, com-
ponents, publish ports, subscribe ports, and events)
as well as dynamic information, which includes event
timestamps (i.e., supplied event timestamps and con-
sumed event timestamps), component mode times-
tamps, thread preemption timestamps, frame times-
tamps, and remote method timestamps. A utility
tool developed by Southwest Research Institute is used
to extract information from IIF files and update AIF
files with aggregate timing information such as worst-
case execution time (WCET) for component methods.
WindView from WindRiver Systems is used to visual-
ize component execution timeline in the form of Gantt
Charts.

4 Workflow of MoBIES Tool-Chain
As shown in Figure 1, the MoBIES workflow has the

following steps:

www.manaraa.com

Component Library

AIF XML File

IIF XML File

Instrumentation
Runtime

Translator

Translator Translator

Visualization Tool
(Windview)

Target Executable

Info
Timing

Reverse
Engineering

ESML Model

CIF XML File

Build Tool (Tornado)

Modeling Tool (GME)

Partial Import

Analysis Tool (AIRES)

Figure 1: The end-to-end MoBIES tool-chain for avion-
ics mission computing. Tools within the tool-chain
inter-operate via standardized interface file formats in
XML such as AIF, CIF and IIF. Translators, such as
ESML2AIF, ESML2CIF and IIF2AIF, are command-
line utility programs that transform between file for-
mats.

1. The input translation step imports existing UML
models in Rational Rose into GME as component
types in ESML. The designer then manually con-
structs models of system architecture in ESML
by instantiating and inter-connecting the compo-
nents, and enhancing the models with attributes
specific to embedded systems such as timing and
resource information.

2. The analysis translation step extracts information
from the ESML models for analysis purposes in the
form of Analysis Interface Format (AIF) files. The
analysis tool called AIRES (Automatic Integra-
tion of Reusable Embedded Software), developed
at University of Michigan, performs various types
of static analysis tasks on the AIF models and up-
dates them with analysis results, which can be im-
ported back into the ESML models, as shown by
the bi-directional arrow between ESML and AIF
models.

3. The configuration translation step generates sys-
tem configuration file in the form of Configuration
Interface Format (CIF) files. Together with the
component library, the target application can then

be built using the Tornado environment from Win-
dRiver [10].

4. Once we have a running system on the target plat-
form, we can instrument the system and collect
runtime execution trace in the form of Instrumen-
tation Interface Format (IIF) files. We can im-
port IIF files into the AIF model in order to add
certain timing annotations, or use the WindView
tool from WindRiver [10] to visualize the execu-
tion timeline. Instrumentation can also be used to
reverse-engineer an existing application to create
CIF models.

generates

Semantic

Mapping Model

Adaptor

ToolY

ToolY

ManagerX−to−Y Semantic Translator

ToolX

ToolX

Adaptor

Workflow

Models

MetaModel

ToolX

describes

generates

ToolX

MetaModel

Registration/Notification/Transfer Services

BACKPLANE (CORBA−Based)

describes

Figure 2: The MoBIES Open Tool Integration Platform
(MOTIF).

5 The AIRES Tool
We provide a brief overview of the AIRES tool,

and refer the interested reader to [3] for more de-
tails. AIRES extracts system-level dependency infor-
mation from AIF file, including event- and invocation-
dependencies, and constructs port- and component-
level dependency graphs. Various analysis tasks are
supported based on these graphs, such as checking for
anomalies like dependency cycles, visual display of de-
pendency graphs, as well as forward/backward slicing
to isolate relevant components. It then assigns execu-
tion rates to component ports by traversing dependency
graphs from timers, and uses real-time scheduling the-
ory to analyze the resulting system of real-time task-
set. Allocation of components to execution platforms is
assisted by several heuristic algorithms such as first-fit,
best-fit and graph min-cut.

We provide some details on using model-checking for
formal verification, since this functionality was added
after the publication of [3]. Model-checking is a pop-
ular technique for software verification, which explores

www.manaraa.com

the system state space exhaustively and proves or dis-
proves property specifications, typically written in tem-
poral logic. It can perform deeper semantic analysis,
and uncover subtle bugs that are harder to detect with
conventional simulation or static analysis techniques.
We transform parts of ESML models into a variant of
process algebra called Finite State Processes [5](FSP),
and use an existing tool Labelled Transition System
Analyzer(LTSA) to analyze the resulting specification.
Since FSP is an untimed formalism, we can only check
for software logical properties such as deadlock free-
dom, not properties related to system timing behavior.

In order to automate the transformation from ESML
models to FSP, we provide a set of reusable component
building blocks that can be instantiated to form a com-
plete system. Documents provided by Boeing describe
various types of components in natural language. We
use FSP to provide an unambiguous, formal description
for each component type based on the natural language
descriptions, and instantiate each component instance
to form a system architecture. An example of a com-
ponent type description from Boeing’s documentation
is:

The ModalComponent is used to alter the flow
of events. The component can be enabled and
disabled via the facet method ChangeMode().
When it is enabled, it will update and gener-
ate an event when it receives an event. When
it is disabled, it will not update or generate
an event.

The corresponding FSP specification is shown below,
assuming the component is initially disabled:

ModalComponent = Disabled,

Disabled = (enable->Enabled | disable->Disabled |

inEvt->Disabled),

Enabled = (enable->Enabled | disable->Disabled |

inEvt->issueCall->receiveReply->outEvt->Enabled1).

6 Conclusions
We have described a model-based approach for anal-

ysis and rapid prototyping of object-oriented real-time
software, with the avionics mission computing software
as the main application domain. The MoBIES tool-
chain covers the entire systems development life-cycle
including modeling, analysis, code generation and run-
time instrumentation. We believe the MoBIES tool-
chain represents a significant improvement over the cur-
rent software development practice, which relies heavily
on time-consuming and expensive testing on the target

platform, as it provides insight into non-functional as-
pects of models at design-level, and helps the engineer
make high-level design decisions that have a large im-
pact on the embedded software.

Acknowledgements We would like to thank en-
gineers at Boeing as well as researchers at Vanderbilt
University and Southwest Research Institute for fruitful
collaborations on the MoBIES tool-chain.

References
[1] Dionisio de Niz and Raj Rajkumar. Geodesic - a

reusable component framework for embedded real-
time systems. Technical report, Carnegie Mellon
University, 2002.

[2] S. Neema G. Karsai, A. Lang. Tool integration
patterns. In Proceedings of Workshop on Tool In-
tegration in System Development, European Soft-
ware Engineering Conference, pages 33–38, 2003.

[3] Zonghua Gu, Sharath Kodase, Shige Wang, and
Kang G. Shin. A model-based approach to system-
level dependency and real-time analysis of embed-
ded software. In Proceedings of Real-Time Appli-
cations Symposium, 2003.

[4] Gabor Karsai, Sandeep Neema, Arpad Bakay,
Akos Ledeczi, Feng Shi, and Andy Gokhale. A
model-based front-end to tao/ace. In Proceedings
of the 2nd Workshop on TAO, 2002.

[5] Jeff Magee and Jeff Kramer. Concurrency: State
Models and Java Programs. Wiley, 1st edition,
2000.

[6] David Sharp. Object-oriented real-time comput-
ing for reusable avionics software. In Proceed-
ings of Fourth International Symposium on Object-
Oriented Real-Time Distributed Computing, pages
185–192, 2001.

[7] John Stankovic. Vest: A toolset for constructing
and analyzing component based operating systems
for embedded and real-time systems. Technical
report, University of Virginia, 2000.

[8] Janos Sztipanovits and Gabor Karsai. Model-
integrated computing. IEEE Computer,
30(4):110–111, April 1997.

[9] TimeSys website. http://www.timesys.com.

[10] WindRiver website. http://www.wr.com.

